babbage's intelligence by simon schaffer

The Imperial Engine

Babbage's characteristic solution was to propose the nationalisation of the engine, the tools and the designs. He was pursuing what he reckoned was the practical logic of much of the machine-tool industry. Outstanding initiatives, such as the campaign to establish imperial measures, the recoinage run from the Royal Mint, the development of precision tools at Greenwich Observatory, and the installation of a production-line for blockmaking machines at the Admiralty's dockyards, were all state-funded projects. Such projects formed part of the activity of what has been labelled the "fiscal-military state", involving large-scale military investment, a major financial bureaucracy and commitment to the accumulation of quantitative information about civil society. Babbage's machine intelligence was designed to appeal to, and reinforce, these rather fragile interests. [41] In his direct appeals to the government, therefore, Babbage was forced to explain how rationally managed design might look like costly disorder. He told Wellington in summer 1834 that the shift from the Difference to the Analytical design was part of this order. "The fact of a new superseding an old machine in a very few years is one of constant occurrence in our manufactories....half finished machines have been thrown aside as useless before their completion". This scarcely consoled the administration nor did it easily engage with the culture of the machine shops, where personal skill and thus individual property was at stake in every "improved" design and workshop layout. Once the engine had been nationalised and shifted to Babbage's own workshop, it was proposed that Jarvis work there but remain under Clement's management. Clement refused the deal because "my plan may be followed without my being in any way a gainer", and Jarvis refused because he would be blamed for any failure "as being necessarily most familiar with the details, whereas all the praise which perfection would secure would attach to Mr Clement who would come over now and then and sanction my plans only when he could not substitute any of his own". The machinist refused to become "party to my own degradation". Babbage and his Royal Society allies might judge this as rational management, while the engineers often saw it as a challenge to their rights and skills. [42]

But while Babbage's early projects collapsed under the force of these challenges, his campaign for machine intelligence and the automatic system successfully captured the interests of the engineering managers and their new system. The intelligence gathered for his work on manufacture offered two important lessons about wage rates and skill patterns. The engineers were prepared to value the calculating engine project by raising the wages of workmen who had been involved in the scheme and they were committed to the design of increasingly automated systems which would break down craft divisions and allow the employment of increasingly cheap hands and increasingly subordinate labour processes. In a telling annotation to his correspondence with Wellington, Babbage remarked that "I have been informed by men who are now scattered about in our manufacturing districts, that they all get higher wages than their fellow workmen in consequence of having worked at that machine". Babbage's source was Richard Wright, whom he first employed as a valet on his European tour in 1828. Five years later, Wright set up as an engineer in Lambeth Road, very near Maudslay. Armed with Babbage's instructions, the young man set out on a tour of the northern workshops as part of the campaign to gather intelligence for Babbage's book. In summer 1834 Wright went to Manchester to work for Whitworth, who had opened his mill there a year earlier after leaving the Difference Engine project. "They are building as large a Factory as any in Manchester", Wright told Babbage. The struggle between craft custom and innovative production-line techniques was striking. According to an American visitor to the Whitworth factory, because of subordination of the workforce and the increasing use of self-acting machines "no-one in his works dared to think". So Wright set out to make himself fit for the Babbage engine scheme. He went to classes at the local Mechanics' Institute and drawing academy. He reported to Babbage that "there is much talk about the [calculating] Machine here, so much so that a man who has worked at it has a greater chance of the best work and I am proud to say that I am getting more wages than any other workman in the Factory". Wright offered himself to Babbage as a possible master-engineer. "I should be glad to convince you that I am able to complete it by making either a model....or by making any difficult part of the Machine either calculating or printing". During the later 1830s Wright was on the tramp throughout the factory system. In 1835, for example, he walked from London to Yorkshire, where he surveyed the factories and the mines, then on to Scotland, Ulster and Lancashire. Though he complained that "the habits and conversation of the Factory are indeed disgusting to a thinking mind", by the end of the decade he had set up his own works in Manchester, where "I intend to employ nothing but the best workmen and material", and from the early 1840s was in active consultation on the Analytical project. By making himself a "thinking mind", Wright became Babbage's ideal, a Smilesian paragon who reckoned that rational management and the careful surveillance of the division of labour provided the key to success in making the calculating engines. In a lengthy epistle Wright explained to Babbage how the new system should work and how management should rule the skills of the workforce:

"The man you select for the workshop ought to be a good general workman both at Vice and Lathe for such a man can see by the way a man begins a job whether he will finish it in a workmanlike manner or not. Perhaps you are not quite aware that at Mr Clement's and most other Factories the work is divided into the branches Vice and Lathe, and in most cases the man who works at the one is nearly ignorant of the other....He ought above all to have studied the dispositions of workmen so as to keep the workshop free from contention and disorder and the causes of the repeated failures of so much new Machinery for I am sure there is more failures through waste of labour and bad management than there is through bad schemes or any other cause". [43]

Wright's was the anonymous voice recorded in the pages of Babbage's Economy of Machinery and which this text helped make representative of the automatic system in the machine-tool trades. In the philosophy of manufacture much was made of the highly personal skills embodied in the master-engineers. In his travel notes for the engine survey, Babbage recorded that "causes of failure" should be found by consulting a "man of science on the principle" and "a practical engineer on mechanical difficulties". It was acknowledged, and celebrated, that manual dexterity remained a central attribute of "the skilled workman". Babbage reckoned that "the first necessity" for his Difference Engine was "to preserve the life of Mr would be extremely difficult if not impossible to find any other person of equal talent both as a draftsman and as a mechanician". Engine masters became heroes. According to Nasmyth "by a few masterly strokes Maudslay could produce plane surfaces so true that when their accuracy was tested by a standard plane surface of absolute truth, they were never found defective". At the same time, "absolute truth" was increasingly vested in the standardised tool-kit of the machine shops. No doubt this was why the authoritative scales and tools in use were so often fetishised. Maudslay's benchtop scale was "humorously called....The Lord Chancellor", while Nasmyth and his colleagues boasted of "the progeny of legitimate descendants" which they had produced. [44]

In London, Lancashire, Clydeside and elsewhere, the systems these men helped forge were the sites of a new managerial and technical network, dependent as much on strenuous regulation of the labour process as on the development of new automatic machinery. The development of ready-made metal textile machinery, for example, was a result of this system. In the process, craft customs were subverted and standardised, accurate production secured. [45] The managers of the most advanced workshops eventually became Babbage's closest allies and sources of intelligence and support. In his Economy of Machinery Babbage made much of the means through which the lathe would guarantee "identity" and "accuracy", and then accounted accuracy as an economy of time, since "it would be possible for a very skilful workman, with files and polishing substances", to produce a perfect surface. So artisan skill could be transmuted into its wage equivalent. In 1847, he contributed a discussion of this theory of lathe-work and metal-turning to the definitive textbook produced by Charles Holtzapffel, doyen of specialist lathe designers. Holtzapffel himself then contributed a long description of Babbage's own tools on the engine project. In the next decade, both Whitworth and Nasmyth offered Babbage support in completing the Analytical Engine and testified in public to the benefits of the calculating engines for their own trade. Babbage's friend the dissenting mathematician Augustus de Morgan brilliantly summarised the relation between the lathe, emblem of automatic skill, and Babbage, master of mechanical analysis in a cartoon showing him at the lathe armed only with a series of logarithmic functions. [46]

Two salient features of this new network mattered for Babbage's own project. Firstly, the systematisation of machine-tool production and working was immensely controversial and highly charged politically. Secondly, this process demanded the reorganisation of the productive body and of the visible space in which it performed. The pre-eminent example of these two features of the automatic system was provided at Portsmouth dockyard, the very earliest site at which the automatic machine-tool system was implemented. Between 1795 and 1807 the entire system of production of pulley-blocks for the Royal Navy was overhauled. Traditionally this production relied on highly specialised crafts in woodworking and milling. Turning and shaping had relied on manual skill and recompense claimed in terms of the informal acquisition by the workforce of wood-chips from the yards for domestic fuel and independent working. In the face of mass protests, military force was used. The new production-line system destroyed and reorganised every feature of this pattern. Pulley-blocks were standardised and marked to prevent what was now called "theft". Standardised machinists replaced specialist craftsmen. Wood was replaced by steam-driven all-metal machinery and separate artisan tasks embodied in purpose-built lathes and clamps. The protagonists of this reorganisation were also the protagonists of much wider social change. The system was developed by Samuel Bentham, the inspector of naval works, who in collaboration with his brother Jeremy had already introduced an identical system of surveillance in Russian wordworking schemes in the early 1780s, a scheme soon to be known as the Panopticon. The engineering works were laid out by Marc Brunel and implemented by his close ally Henry Maudslay. These were the men who introduced Clement to Babbage, and the men who made this system of inspection, regulation and line-production a visible exemplar of rational management. [47]

Samuel Bentham and his colleagues made Portsmouth dockyard a site of "incessant work" and then turned it into a tourist attraction. The Panopticon could be switched from its initial function as a system of surveillance over wood-workers into a general machine for social control. The Portsmouth team argued that public visibility could be an invaluable aspect of their industrial reformation. Bentham "considered it highly conducive to the hastening the introduction of a general System of machinery that public opinion should be obtained in its favour, and that this was likely to be more surely effected by a display of well arranged machines, for the accomplishing of one particular object". So from the 1810s the block machinery became a common resort for interested visitors. As Peter Linebaugh has argued, the new system of technological repression institutionalised at Portsmouth can be taken as exemplary of the emergence of the wage form and of the productive labourer. "On entering the block mill, the spectator is struck with the multiplicity of its movements and the rapidity of its operations". [48] The impersonal pronouns in this account are eloquent. The combination of the disembodied labour process and the public representation of systematic mechanisation were equally vital for Babbage's political economy. A mark of this significance was his development of and publicity for the mechanical notation which he developed to represent the structure and motions of machinery. Initially designed to "see at a glance what every moving piece in the machinery was doing at each instant of time", this panoptic notation was proffered as a technology of universal management. In a draft of his 1826 paper Babbage stressed the advantages of machine semiotics because "of all our senses that of sight conveys intelligence most rapidly to the mind". The industrial journalist Dionysius Lardner reported that the working of the human body and of the factory system could both be represented and managed this way. The analogy of machine, body and workshop was developed at once: "not only the mechanical connection of the solid members of the bodies of men" but also, "in the form of a connected map or plan, the organization of an extensive factory, or any great public institution, in which a vast number of individuals are employed, and their duties regulated (as they generally are or ought to be) by a consistent and well-digested system". It is for this reason that the term "system" requires further historical analysis. The panoptic gaze which revealed the order of the factory system and the mechanism of the body also rendered the workforce and its resistance rather hard to make out. [49]


Epaminondas Cambanis Keith Whittle Andry Ratovondrahona Umaporn Richardson-Saema Mark Gatehouse
Javier Onate Zamiha Manji Irene Florou Umaporn Richardson-Saema Umaporn Richardson-Saema
Mark Smith Yami Trequesser Ricardo Amaral Svetislav Bankerovic Larisa Blazic
Arthi Amaran Chris Kakatsakis Samantha McKellar Christopher Aylott
Edward Cookson Joanna Griffin Matt Knight Julie Roebuck
Haro Lee Mayudia Mothar Sacha Davidson Tony Momoh Tony Momoh
Lizzie O'Grady Andrew Purdy Joan Smith Graham Fudger Tony Momoh